Symbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis.
نویسندگان
چکیده
The association between cnidarians and photosynthetic dinoflagellates within the genus Symbiodinium is a prevalent relationship in tropical and subtropical marine environments. Although the diversity of Symbiodinium provides a possible axis for niche diversification, increased functional range and resilience to physical stressors such as elevated temperature, how such diversity relates to the physiological balance between autotrophy and heterotrophy of the host animal remains unknown. Here, we experimentally show interspecific and intraspecific variability of photosynthetic carbon fixation and subsequent translocation by Symbiodinium to the model cnidarian host Aiptasia pallida. By using a clonal anemone line harboring different species of Symbiodinium, we determined that symbiont identity influences trophic plasticity through its density, capacity to fix carbon, quantity of translocated carbon and ultimately the host's capacity to ingest and digest prey. Symbiont carbon translocation and host prey ingestion were positively correlated across symbiont combinations that consisted of different isoclonal lines of Symbiodinium minutum, while a combination with type D4-5 Symbiodinium displayed lower carbon translocation, and prey capture and digestion more similar to Aiptasia lacking symbionts. The absence of a shift toward greater heterotrophy when carbon translocation is low suggests that the metabolic demand of feeding and digestion may overwhelm nutritional stores when photosynthesis is reduced, and amends the possible role of animal feeding in resistance to or recovery from the effects of climate change in more obligate symbioses such as reef-building corals.
منابع مشابه
A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis
The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cni...
متن کاملCell biology of cnidarian-dinoflagellate symbiosis.
The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-din...
متن کاملMetabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis.
Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this st...
متن کاملA Lipidomic Approach to Understanding Free Fatty Acid Lipogenesis Derived from Dissolved Inorganic Carbon within Cnidarian-Dinoflagellate Symbiosis
The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and ...
متن کاملAdaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications
Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To deciphe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 6 شماره
صفحات -
تاریخ انتشار 2015